Tuesday, December 16, 2014
Glass Brain FlyThrough
This is an anatomically-realistic 3D brain visualization depicting real-time source-localized activity (power and "effective" connectivity) from EEG (electroencephalographic) signals. Each color represents source power and connectivity in a different frequency band (theta, alpha, beta, gamma) and the golden lines are white matter anatomical fiber tracts. Estimated information transfer between brain regions is visualized as pulses of light flowing along the fiber tracts connecting the regions.
The modeling pipeline includes MRI (Magnetic Resonance Imaging) brain scanning to generate a high-resolution 3D model of an individual's brain, skull, and scalp tissue, DTI (Diffusion Tensor Imaging) for reconstructing white matter tracts, and BCILAB (http://sccn.ucsd.edu/wiki/BCILAB) / SIFT (http://sccn.ucsd.edu/wiki/SIFT) to remove artifacts and statistically reconstruct the locations and dynamics (amplitude and multivariate Granger-causal (http://www.scholarpedia.org/article/G...) interactions) of multiple sources of activity inside the brain from signals measured at electrodes on the scalp (in this demo, a 64-channel "wet" mobile system by Cognionics/BrainVision (http://www.cognionics.com)).
The final visualization is done in Unity and allows the user to fly around and through the brain with a gamepad while seeing real-time live brain activity from someone wearing an EEG cap.
Team:
- Gazzaley Lab / Neuroscape lab, UCSF: Adam Gazzaley, Roger Anguera, Rajat Jain, David Ziegler, John Fesenko, Morgan Hough
- Swartz Center for Computational Neuroscience, UCSD: Tim Mullen & Christian Kothe
Labels:
Anatomy and Physiology,
Biology,
Brain,
Science,
Technology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment